32 research outputs found

    Deep Regression versus Detection for Counting in Robotic Phenotyping

    Get PDF
    Work in robotic phenotyping requires computer vision methods that estimate the number of fruit or grains in an image. To decide what to use, we compared three methods for counting fruit and grains, each method representative of a class of approaches from the literature. These are two methods based on density estimation and regression (single and multiple column), and one method based on object detection. We found that when the density of objects in an image is low, the approaches are comparable, but as the density increases, counting by regression becomes steadily more accurate than counting by detection. With more than a hundred objects per image, the error in the count predicted by detection-based methods is up to 5 times higher than when using regression-based ones

    Retinal image enhancement via a multiscale morphological approach with OCCO filter.

    Get PDF
    Retinal images are widely used for diagnosis and eye disease detection. However, due to the acquisition process, retinal images often have problems such as low contrast, blurry details or artifacts. These problems may severely affect the diagnosis. Therefore, it is very impor tant to enhance the visual quality of such images. Contrast enhancement is a pre-processing applied to images to improve their visual quality. This technique betters the identification of retinal structures in degraded reti nal images. In this work, a novel algorithm based on multi-scale mathe matical morphology is presented. First, the original image is blurred us ing the Open-Close Close-Open (OCCO) filter to reduce any artifacts in the image. Next, multiple bright and dark features are extracted from the filtered image by the Top-Hat transform. Finally, the maximum bright values are added to the original image and the maximum dark values are subtracted from the original image, previously adjusted by a weight. The algorithm was tested on 397 retinal images from the public STARE database. The proposed algorithm was compared with state of the art al gorithms and results show that the proposal is more efficient in improving contrast, maintaining similarity with the original image and introducing less distortion than the other algorithms. According to ophthalmologists, the algorithm, by improving retinal images, provides greater clarity in the blood vessels of the retina and would facilitate the identification of pathologies.CONACYT - Consejo Nacional de Ciencia y TecnologíaPROCIENCI

    Topology-preserving ordering of the RGB space with an evolutionary algorithm

    Get PDF
    Mathematical morphology (MM) is broadly used in image processing. MM operators require to establish an order between the values of a set of pixels. This is why MM is basically used with binary and grayscale images. Many works have been focused on extending MM to colour images by mapping a multi-dimensional colour space onto a linear ordered space. However, most of them are not validated in terms of topology preservation but in terms of the results once MM operations are applied. This work presents an evolutionary method to obtain total- and P-orderings of a colour space, i.e. RGB, maximising topology preservation. This approach can be used to order a whole colour space as well as to get a specific ordering for the subset of colours appearing in a particular image. These alternatives improve the results obtained with the orderings usually employed, in both topology preservation and noise reduction

    Morphological Description of Color Images for Content-Based Image Retrieval

    No full text
    corecore